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Abstract

Background: Climate change is expected to simultaneously alter many of the abiotic qualities of ecosystems as
well as biotic interactions, especially trophic interactions. However, research to date has mostly focused on
elucidating the effects of single climate change variables on individual species. Here, we use established
meta-analysis techniques to synthesize the existing literature on the interactive effects of multiple climate
change variables on trophic interactions.

Results: Most of the studies included in our meta-analysis examined plant-insect herbivore interactions. We found
that the majority of trophic interaction response variables (55%) displayed multiplicative reactions to interacting
climate change variables while 36% and 9% displayed antagonistic and synergistic reactions, respectively. We also
found that only one of six climate change variable pairings had consistent positive or negative effects on trophic
relationships, largely because interaction type and magnitude were both highly context dependent across the
pairings. Most notably, males and females frequently responded differently to interacting climate change variables,
and the response strength frequently varied with the underlying nutrient load of the system.

Conclusions: Our results suggest that trophic interactions commonly respond antagonistically to interacting
climate change variables whereas synergistic and simple additive/multiplicative reactions are less common than
previously thought. In addition, response type and magnitude are highly context dependent. These findings further
suggest that in many cases, future ecosystem responses to climate change, whether positive or negative, may be
dampened relative to predictions based on experiments that investigate the effects of single climate change
variables on single species. However, there is a paucity of work that has focused on the effects of interacting
climate change variables on dynamic biotic relationships, likely because such research requires complex
experimentation. Increasing the complexity of climate change research is necessary for accurately predicting
ecosystem responses.

Keywords: Carbon dioxide, Feeding, Food web, Global change, Log response ratio, Ozone, Photoperiod, Rainfall,
Temperature, Ultraviolet radiation
Background
Climate change stands to alter ecosystem structure and
function through numerous and diverse pathways. In
addition to changing the fundamental abiotic qualities of
ecosystems (e.g., temperature, water availability, CO2

concentration), climate change is expected to alter the
behavior and life history characteristics of organisms
which could lead to dramatic changes in inter and intra-
specific competition, predation, mutualisms, species dis-
tributions, biodiversity patterns, and the provisioning of
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ecosystem services [1-6]. Yet most studies have tended
to examine climate effects on biotic components by
focusing on single species while treating the larger com-
munity as background variation [7] and by typically
focusing on a single climate change variable at a time
[8-10]. Whether or not such approaches adequately
capture how systems will respond to climate change
remains uncertain.
We address this uncertainty by comparing the responses

of interacting species subjected to the manipulation of a
single climate change variable with their responses to
simultaneous manipulations of multiple climate change
variables. Specifically, we use a meta-analytic approach to
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synthesize existing literature, identify trends and patterns,
and highlight areas that deserve immediate attention and
other areas in which consensus may have already been
reached [11]. Meta-analysis, as used in ecological research,
is a statistical technique that combines data from inde-
pendent studies to elucidate overall, net effect magni-
tudes of biotic or abiotic variables on a response of
interest [12,13]. Meta-analysis has already been effective in
providing synthetic insights into the interacting effects of
multiple anthropogenic variables, or “stressors”, like
pollutants, invasive species, habitat fragmentation, and
eutrophication on responses like species interactions
within communities and ensuing ecosystem functioning
[2,8,9,14-19]. But the effects of interacting climate change
variables on these responses have yet to be the subject of
synthesis. Meta-analysis is particularly suited for synthe-
sizing results of climate change studies that cover many
different species and habitat types because such studies
frequently vary in sample size and statistical power, issues
that are explicitly accounted for in meta-analysis. Further-
more, meta-analysis is useful in research on climate
change as individual studies often produce conflicting
results [13].
Our focus here is on the role of simultaneously (and

rapidly) changing climate variables on trophic interac-
tions, as these factors are among the major drivers of
ecosystem structure and function [20]. Using estab-
lished meta-analysis techniques, we determined the
frequency of different interaction types (multiplicative,
synergistic, antagonistic: see the “Effect size calcula-
tions” section) across different combinations of climate
change variables and then elucidated the potential
mechanisms underlying the interactions. We also inves-
tigated how the environmental context in which the
variables were manipulated influenced the nature and
strength of trophic interactions (i.e., examined context
dependency) because many studies manipulated add-
itional factors (e.g., nutrient levels, community compos-
ition) in addition to systematic manipulation of the
common climate variables that are the focus of our
analysis.
Our analysis was motivated by the broad, working

hypothesis that non-linear (synergistic or antagonistic)
interactions would largely result from combinations of
climate change variables that operated through different
pathways [10,14]. For example, in a plant-herbivorous
insect trophic interaction, warmer temperatures may
increase the insect’s metabolism and an increase in
atmospheric CO2 may decrease the nutritional quality of
the plant [21-23]. Thus, any simultaneous increases in
levels of these two climate change variables stand to
reinforce each other to increase the feeding rate of the
insect, but through different pathways, and thereby result
in a net synergistic trophic interaction.
Results
Database
Our literature search produced 2,122 candidate studies,
of which 15.5% (n = 328) were experimental or modeling
studies that examined the effects of at least one climate
change variable on multi-trophic interactions. Only 2.2%
(n = 47) of the studies examined the effects of multiple
interacting climate change variables, with 1.9% (n = 41)
using two interacting climate change variables and 0.3%
(n = 6) using three interacting climate change variables.
Of these 47 studies, 6 did not report all the necessary
mean and variance data from the 4 required treatment
groups and 7 did not report data for any response vari-
ables directly related to feeding interactions. Therefore,
34 of the studies from the original candidate pool met
all of our criteria and were included in our analyses. In
the terrestrial studies (n = 26), most of the feeding inter-
actions examined were either between plants and herbiv-
orous insects, or plants, herbivorous insects, and
parasitoids, but two studies examined plant-microbial
decomposer interactions. In the marine studies (n = 5),
all the feeding interactions examined involved plants
and herbivorous invertebrates. In the freshwater studies
(n = 3), all of the feeding interactions examined were
between phytoplankton and zooplankton. Additional
details about each study, including study length and
climate change variables manipulated, are provided in
Table 1.
Collectively, the 34 studies reported 126 response

variables related to feeding interactions, but 11 were ex-
cluded because they were redundant (see the “Methods”
section). Of the remaining 115 response variables, 65%
(n = 75) measured weights of individuals or the biomass
of groups, 34% (n = 39) measured feeding rates or
growth rates, and 1% (n = 1) measured the size of indi-
viduals. Across the 115 response variables, 6 unique
combinations of climate change variables were tested:
CO2 × temperature (n = 38), CO2 × O3 (n = 33),
temperature × rainfall (n = 18), temperature × photo-
period (n = 14), CO2 × rainfall (n = 9), and temperature
× ultraviolet radiation (UV; n = 3).

Effect sizes and interaction types
Only one of the summary effect sizes for the climate
change variables tested in isolation (UV) and one of the
climate variable interaction pairings (temperature × UV)
were significantly positive or negative (Figure 1). The
majority of response variables (55%; n = 63) displayed
multiplicative reactions (the null hypothesis) to interact-
ing climate change variables while 36% (n = 41) and 9%
(n = 11) displayed antagonistic and synergistic reactions,
respectively. For each of the six unique combinations
of climate change variables, the proportions of multi-
plicative, synergistic, and antagonistic interactions varied



Table 1 Studies used in meta-analysis

Source Habitat
type

Length of
study (days)

Number of
trophic levels

Climate variables manipulated

Temp CO2 Rain O3 Photo UV

[24] Freshwater 50 Food web X X

[25] Freshwater 4 Food web X X

[26] Freshwater 50 2 X X

[27] Marine 36 Food web X X

[28] Marine 35 2 X X

[29] Marine 11 2 X X

[30] Marine 14 2 X X

[31] Marine 42 2 X X

[32] Terrestrial 1461 3 X X

[33] Terrestrial 120 3 X X

[34] Terrestrial 70 2 X X

[35] Terrestrial 42 2 X X

[36] Terrestrial 56 2 X X

[37] Terrestrial 63 2 X X

[38] Terrestrial 100 2 X X

[39] Terrestrial 100 2 X X

[40] Terrestrial 6 2 X X

[41] Terrestrial 15 Food web X X X

[42] Terrestrial 692 Food web X X X

[43] Terrestrial 35 2 X X X

[44] Terrestrial 1460 Food web X X

[45] Terrestrial Unknown 2 X X

[46] Terrestrial 46 2 X X

[47] Terrestrial 60 3 X X

[48] Terrestrial 78 3 X X

[49] Terrestrial 62 2 X X

[50] Terrestrial 45 2 X X

[51] Terrestrial 55 2 X X

[52] Terrestrial 45 2 X X

[53] Terrestrial 21 2 X X

[54] Terrestrial 7 2 X X

[55] Terrestrial 1096 2 X X

[56] Terrestrial 45 2 X X

[57] Terrestrial 1 3 X X

“Food web” indicates that multiple species at each of two or more trophic levels were studied. “X” indicates that a climate variable was manipulated in the
particular study. All studies are experimental except [33] which is a modeling study.
“Temp”= temperature, “Photo”= photoperiod, and “UV”= ultraviolet radiation.
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widely (Figure 2). For example, for both the CO2 ×
temperature and rain × temperature pairings, roughly 35%
of the response variables showed antagonistic interactions,
60% showed multiplicative interactions, and 5% showed syn-
ergistic interactions. In contrast, for the CO2 × O3 pairing,
85% of the response variables were evenly divided between
antagonistic and multiplicative interactions while synergistic
interactions accounted for the remaining 15% (Figure 2).
Context dependence
We found that between 6% and 50% of interaction types
changed across different contexts, with the lowest per-
centage of interaction type variation caused by community
composition and the highest percentage of interaction
type variation caused by sex (Table 2). Furthermore, we
found that between 5% and 83% of interaction effect size
magnitudes were significantly different across contexts,



Figure 1 Summary effect sizes of individual climate change
variables (top) and climate variable interaction pairings
(bottom) on trophic relationships. Circles represent mean
summary effect sizes, and lines represent 95% confidence intervals
(CI). If 95% CIs overlap zero (dotted line), then the summary effect
size is not significantly positive or negative. “Temp”= temperature,
“Photo”= photoperiod, and “UV”= ultraviolet radiation.

Figure 2 Percentage of different response variables across climate
variable interaction pairings that fell into three interaction
categories. Black bars= antagonistic, white bars=multiplicative, grey
bars= synergistic. “Temp”= temperature, “Photo”= photoperiod, and
“UV”= ultraviolet radiation.
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with the lowest percentage of significant differences
caused by species identity and the highest percentage of
significant differences caused by nutrient levels (Table 2).

Publication bias
The possibility of publication bias in the literature we
surveyed likely had no effect on our results. First, we
found no significant correlation between effect size and
study variance (τ = 0.099, Z = 1.57, p = 0.12). Second,
Rosenthal’s fail-safe number (1607.5) far exceeds the
threshold value (585) produced by the equation 5n + 10.

Discussion
This study reviewed the climate change literature to
begin to offer synthetic understanding of the possible
effects of multiple interacting climate change variables
on trophic interactions. It is clear from the relatively
small number of studies available (n = 47) and the even
smaller number of studies that fit all of our meta-
analytical criteria (n = 34) that further experimental
research is needed on this topic. Despite the small num-
ber of studies, our analysis revealed a broad range of
reactions to interacting climate change variables by
trophic response variables that have thus far been widely
overlooked.
Our analysis suggests that trophic relationships between

organisms may frequently respond antagonistically to
interacting climate change variables relative to single fac-
tor manipulations, whereas synergistic responses are rare.
This result runs counter to assertions made in a modeling
study that examined potential effects of interacting global
change drivers on biodiversity patterns and hypothesized
that the global change drivers would generally interact
synergistically or not at all [15]. However, more recent
meta-analytic studies that address the effects of multiple
global change variables on species performances broadly
agree with our results. For example, total aboveground
plant biomass frequently responds antagonistically to
CO2 × temperature treatments relative to single factor
manipulations [18], while animal mortality does not
generally respond synergistically to interacting stressors
[17]. A third study suggested that antagonisms and syner-
gisms between global change drivers occur at roughly
equal rates [9]. Importantly, all of these meta-analyses,
including our own, examined different types of response
variables yet came to roughly similar conclusions: antag-
onistic reactions to interacting global change drivers by
organisms appear to be quite common while synergistic
and simple additive/multiplicative reactions are less com-
mon than previously thought.
Another important conclusion of our meta-analysis is

that reactions of trophic response variables to interacting
climate change variables can be highly context dependent.



Table 2 Context dependence of trophic response variables examined across all 34 studies that manipulated multiple
climate change variables

Context Number of
interaction

pairs

Numbers that
changed interaction

type

% that changed
interaction type

Numbers that changed
interaction effect size

magnitude

% that changed interaction
effect size magnitude

Sex 14 7 50 5 36

Nutrient level 6 2 33 5 83

Genotype 15 5 33 8 53

Species identity 20 6 30 1 5

Climate variable
combination

12 2 17 3 25

Community
composition

17 1 6 3 18
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For example, the interaction type (multiplicative, synergis-
tic, antagonistic) was different between males and females
50% of the time and the interaction effect size magnitude
was different between varying nutrient levels 83% of the
time. Thus, increasing the number of global change drivers
examined in a factorial study may alter the interaction out-
come and/or the interaction effect size magnitude [58],
and demographic and community composition factors, if
not properly controlled for, could have additional effects. It
has even been suggested that higher order interactions of
global change drivers produce smaller magnitude re-
sponses which, if generally true, would mean that antici-
pated positive and negative impacts of global change might
be dampened relative to current predictions based on
single factor studies [58].
Some of the climate change variable pairings frequently

produced unexpected emergent interaction types, suggest-
ing that each climate variable exerts effects on trophic
relationships through multiple pathways. As an example,
consider the effects of the CO2 × temperature interaction
on a typical plant-herbivorous insect feeding relationship,
which was the most commonly examined trophic relation-
ship across the studies we analyzed. Plant quality from the
perspective of herbivorous insects is generally determined
by the nutrient profile of the plant (particularly the C:N
ratio for nitrogen limited insects [59,60]), any defensive
chemical compounds produced by the plant (e.g., pheno-
lics and terpenes), and the physical traits of plant tissues
(e.g., leaf toughness and thickness [22]). In general, plants
raised in environments with high concentrations of CO2

exhibit high C:N ratios, increased production of phenolics,
and increased leaf toughness and thickness [21,22]. These
relatively low-quality plants force insects to increase their
feeding rates to compensate for the decreased food quality
[61]. Increases in atmospheric CO2 have few direct effects
on insects [62], except in a few special cases such as
hematophagous insects and phytophagous insect larvae
that use CO2 gradients to locate feeding opportunities
[63]. In contrast, increased temperatures do not generally
affect plant C:N ratios or physical traits but they can
increase terpene production and can either cause increases
or decreases in plant phenolics [22]. Insects exposed to in-
creased temperatures generally exhibit increased metabol-
ism and respiration [64], resulting in increased feeding,
development, and reproduction rates [62].
On the basis of the individual effects of CO2 and

temperature on plant quality and insect metabolism dis-
cussed above, we would logically expect the interactive
effects of CO2 and temperature to promote synergistic and
multiplicative responses in plant-herbivorous insect trophic
interactions. However, our meta-analysis revealed more
antagonistic reactions (n = 12) than synergistic and multi-
plicative reactions combined (n = 11). There are many
potential explanations for this disparity. First, the inclusion
of an additional trophic level, (i.e., a predator of the herbiv-
orous insect) could alter the plant-herbivorous insect
trophic relationship (e.g., [32]) by changing the timing and
extent of feeding or the development rate of the herbivor-
ous insect. Second, all the parts of a plant may not respond
to climate change variables on the same time scales and
mobile herbivorous insects could therefore seek out and
continue to consume plant tissues with high nutrient value
(e.g., [35]). Third, many plant and herbivorous insect
species may physiologically respond differently to identical
climate manipulations (e.g., [40,65]), and therefore, changes
in trophic relationships may not be consistent across all
scenarios. Lastly, if experiments testing the effects of inter-
acting climate change variables on trophic relationships are
not long enough, they may miss important interactions
that only emerge over long time periods [40].
It is noteworthy that not all studies of the effects of cli-

mate change on ecological interactions may need to con-
sider the interactive effects of all climate change variables.
Though most climate change variables likely interact at
least indirectly, the effects of some of these interactions
on ecological relationships may be negligible. Indeed, one
of the possible reasons for why we found so few studies
that fit our meta-analysis criteria is that researchers may
exclude some climate change variables from their experi-
ments if they are fairly certain the variables will have little
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impact on their results. However, given the frequent dis-
coveries of “ecological surprises” in ecological climate
change research (e.g., [24]), we encourage researchers to
continue to test for the potential unexpected interactions
between climate change variables rather than dismiss can-
didate variables under the presumption that they will not
have an effect.
Our results lead us to agree with other recent meta-

analyses and reviews: to understand and predict the
effects of climate change and other anthropogenic forms
of global change on ecosystem structure, function, and
services, the complexity of experimental and modeling
studies must increase to more closely reflect natural
conditions [10,66]. The experimental challenge will be to
account for a diverse array of factors [7], including the
two we have highlighted in our meta-analysis: the interac-
tions between climate change variables and the direct and
indirect interactions that permeate food webs [1,2,67].
Also, future studies should 1) run longer to better under-
stand the evolutionary and demographic stability of
altered trophic interactions over multiple generations
[23,68], 2) examine food webs in different kinds of ecosys-
tems (the large majority to date have been terrestrial), 3)
examine trophic relationships across more than simple
two- and three-level linear interactions and beyond plant-
insect feeding scenarios, 4) focus on more climate change
variable pairings beyond CO2 × temperature and CO2 ×
O3 (by far the most studied variable pairings to date), and
5) examine the role of body size and movement capabil-
ities in determining the response of trophic relationships
to interacting climate change variables. These recom-
mended amendments to current experimental practices
will help to increase realism by accounting for the inher-
ent complexity of natural trophic interactions and thereby
bring us closer to more accurate predictions of the conse-
quences of climate change on ecosystem structure and
function.

Conclusions
Despite the relatively small amount of research that has
examined the effects of interacting climate change vari-
ables on trophic interactions, our meta-analysis of this lit-
erature revealed some striking patterns. First, trophic
interactions frequently respond multiplicatively and antag-
onistically to interacting climate change variables, while
synergistic responses are relatively rare. Second, both
response type and magnitude are highly context
dependent, indicating that unanticipated emergent ef-
fects of climate change on ecosystems are likely to
occur. There is a paucity of work that has focused on
the effects of interacting climate change variables on
dynamic biotic relationships, likely because such re-
search requires complex experimentation and in-depth
understanding of many species’ physiology, behavior,
and life history. Nevertheless, increasing the complexity
of climate change research is necessary for accurately
predicting ecosystem responses and informing future
conservation and management strategies.
Methods
Database development
We used Web of Science to search the literature for fac-
torial experimental or modeling studies that investigated
the individual and interactive effects of at least two climate
change variables on the feeding interactions between spe-
cies at different trophic levels. We chose to focus on six
climate change variables that are most frequently included
in experiments: temperature, precipitation, CO2, O3,
photoperiod, and ultraviolet radiation. We used the search
terms “food web”, predator* or predation, prey or herbi-
vore*, herbivore* and plant*, parasite* and host* in com-
bination with “climate change”, “climatic change”, “global
warming”, “global change”, and “global environmental
change”. We supplemented our database by searching
through the literature-cited sections of key review papers
and meta-analyses as well as publications from research
sites that employ free-air carbon dioxide enrichment [21].
We chose to focus on response variables that are dir-

ectly related to trophic interactions, such as feeding rate,
weight gain, and population biomass at a specific trophic
level. Some studies reported data from multiple response
variables, and we excluded those that were redundant. For
example, if a study reported both final herbivore weight
and feeding rate from one experimental setup, then we
only included feeding rate in our analyses because it is a
more direct measure of trophic interactions. When studies
reported response variables at multiple time points, we
used the data from the final time point.
Studies were included in our analyses if they contained

mean and variance data across all four treatment types:
control, manipulation of variable A alone, manipulation of
variable B alone, and manipulation of variables A and B
together. Also, studies had to simultaneously expose spe-
cies in the different trophic levels to both experimental cli-
mate manipulations (e.g., temperature and precipitation).
Some of the studies we encountered exposed plants to
one climate manipulation and then fed parts of those
plants to herbivores exposed to a different climate ma-
nipulation. Such studies were excluded from our analyses.
Lastly, a small number of studies manipulated three cli-
mate change variables within one experimental design.
For these studies, we included the response variables from
each unique climate variable pairing. Data were mined
from graphs presented in each published study using the
program Plot Digitizer (version 2.6.3; http://plotdigitizer.
sourceforge.net) and, in some cases, data were provided
by the authors of the studies.

http://plotdigitizer.sourceforge.net
http://plotdigitizer.sourceforge.net
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Effect size calculations
We calculated main and interaction effect sizes for each
study using methods for factorial meta-analysis [19,69,70].
We chose the log response ratio over other metrics, such
as Hedge’s d [71], because of 1) its ability to detect true ef-
fects [72], 2) its ability to remain more normally distributed
even with small sample sizes [69], 3) its linear nature [69],
and 4) its more explicit ties to ecological dynamics [73].
Following [19], main and interaction effect sizes based

on a multiplicative model were calculated as

La ¼ ln
�ya
�ycon

� �

Lb ¼ ln
�yb
�ycon

� �

Lab ¼ ln
�yab
�yb

� �
− ln

�ya
�ycon

� �

where Lx is the log response ratio for the indicated
response variable (in subscript) and �yx is the mean value
for the indicated response variable (in subscript). Indi-
vidual estimates of variance were calculated as

va ¼ sa;pooled
1

ncon �yconð Þ2 þ
1

na �yað Þ2
 !

vb ¼ sb;pooled
1

ncon �yconð Þ2 þ
1

nb �ybð Þ2
 !

vab ¼ sab;pooled
1

ncon �yconð Þ2 þ
1

na �yað Þ2 þ
1

nb �ybð Þ2 þ
1

nab �yabð Þ2
 !

where sx,pooled is the pooled standard deviation for the
indicated response variable (in subscript) and nx is the
sample size for the indicated response variable (in sub-
script). The pooled standard deviation was calculated as

sa;pooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncon−1ð Þ sconð Þ2 þ na−1ð Þ sað Þ2

ncon þ na−2

s

sb;pooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncon−1ð Þ sconð Þ2 þ nb−1ð Þ sbð Þ2

ncon þ nb−2

s

sab;pooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncon−1ð Þ sconð Þ2 þ na−1ð Þ sað Þ2
þ nb−1ð Þ sbð Þ2 þ nab−1ð Þ sabð Þ2

ncon þ na þ nb þ nab−4

vuuuut
where sx is the standard deviation of the mean for the
indicated response variable (in subscript). We then calcu-
lated 95% confidence intervals (CI) around each Lx value
using the equation
Lx � 1:96 � ffiffiffiffiffi
vx

p

where vx is the variance estimate for variable A, variable
B, or variables A and B together. Following [11], weighted
summary effect sizes (E) were calculated for k response
variables as

E ¼
Xi¼k

i¼1
1
vi

� �
� eiXi¼k

i¼1
1
vi

� �
where vi is the variance estimate and ei is the log
response ratio for each response variable. Significant
weighted summary effect sizes were those that had 95%
CIs that did not contain zero, and E values were calcu-
lated for each climate change variable tested in isolation
as well as all variables pooled together.
We based our analyses of multiple interacting climate

change variables on an underlying multiplicative model,
as opposed to a more conservative additive model [74],
because multiplicative models are more ecologically real-
istic representations of interacting effects [75] and the
log response ratio itself is based on a multiplicative
model [76]. Interaction effects were classified as multi-
plicative (the null hypothesis) if the 95% CI around the
interaction effect size (Lab) contained zero. If both vari-
able A and B effect sizes (La and Lb) were positive, the
interaction effect was classified as synergistic when the
Lab 95% CI was greater than zero and antagonistic when
less than zero. If both La and Lb were negative or one
was negative and one positive, then the classifications
were reversed [19]. Following [74], multiplicative inter-
actions in the multiplicative model are defined as in-
stances where the effect size of the interaction between
variables A and B is equal to the product of the effect
sizes of variables A and B alone. Synergistic interactions
are those in which the effect size of the interaction be-
tween variables A and B is greater than the product of
the effect sizes of variables A and B alone, and antagon-
istic interactions are those in which the effect size of the
interaction between variables A and B is less than the
product of the effect sizes of variables A and B alone.

Context dependence
Cumulatively, the studies included in our meta-analysis
explicitly or implicitly tested six different kinds of context
dependence: nutrient level, sex, species identity, commu-
nity composition, genotype, and combinations of climate
change variables. We examined each of the six independ-
ently to determine if interaction type or interaction effect
size magnitude (Lab ± 95% CI) were context dependent.
For example, interaction type might be different for males
and females (e.g., antagonistic for one and synergistic for
the other) because of behavioral or physiological differences
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between the sexes, and interaction effect size magnitude
would be significantly different between sexes for a particu-
lar study if the Lab ± 95% CI ranges for males and females
did not overlap.

Publication bias
The strength of any given meta-analysis can be affected by
publication bias, defined as the preferential publication of
studies reporting certain kinds of results over those
reporting other types of results [77]. This can lead to over-
estimation of the quantity of significant results reported
from a given field of study. To investigate the likelihood of
publication bias affecting the results of our own meta-
analysis we employed two techniques: Kendall’s tau and
the fail-safe number. We used Kendall’s tau to assess the
correlation between effect sizes and variance from each
study, with a significant correlation suggesting a high
probability of publication bias [78]. We used Rosenthal’s
fail-safe number to estimate the number of hypothetical
additional studies reporting non-significant results needed
to reduce the effect size to non-significance [79]. If the
fail-safe number exceeds 5n + 10 (n = the number of stud-
ies used in the meta-analysis), then, we can assume that
publication bias likely did not affect our results [79]. We
used MetaWin 2.0 (www.metawinsoft.com) to carry out
these analyses.
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